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A counterexample to the extension space
conjecture for realizable oriented matroids

Gaku Liu∗
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Abstract. The extension space conjecture of oriented matroid theory states that the
space of all one-element, non-loop, non-coloop extensions of a realizable oriented ma-
troid of rank d has the homotopy type of a sphere of dimension d− 1. We disprove
this conjecture by showing the existence of a realizable uniform oriented matroid of
high rank and corank 3 with disconnected extension space.
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1 Introduction

Oriented matroids are objects which abstract the combinatorial properties of real vector
arrangements and real hyperplane arrangements. The extension space conjecture is a
long-standing question in oriented matroid theory which arose as the intersection of two
fundamental problems in polytope theory and oriented matroid theory: the generalized
Baues conjecture and the combinatorial Grassmannian conjecture. The general theme
of these problems is to better understand the extent to which combinatorial data and
geometric configurations can model each other.

Rather than define oriented matroids formally, we will give a geometric description
of the conjecture. Assume in this abstract that all hyperplane arrangements are central.
An oriented hyperplane arrangement is a real hyperplane arrangement in which we have
oriented each hyperplane; i.e., we have chosen one side of the hyperplane to be positive
and the other to be negative. We define a realizable oriented matroid to be a combinatorial
equivalence class of oriented hyperplane arrangements. A realization of a realizable ori-
ented matroid is a hyperplane arrangement within the equivalence class. The rank of an
oriented matroid M is the dimension of an essential realization of M.

Fix an oriented hyperplane arrangement A. Suppose we want to add a new oriented
hyperplane to A to form a new (central) arrangement A′. Let E(A) denote the set of
all possible realizable oriented matroids that A′ could belong to. We can put a partial
order on E(A) by saying that M ≤ M′ if a realization for M can be obtained by moving
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a realization for M′ into a more special position. The resulting poset E(A) is called the
extension poset of A.

It is easily seen that if A is essential of dimension r, then E(A) is isomorphic to the
face poset of the boundary of an r-polytope. From this we can describe the “topology”
of E(A) as follows: Given a poset P , the order complex of P is the simplicial complex
whose simplices are the finite chains of P , ordered by inclusion. When we talk about
the topology of a poset, we mean the topology of its order complex. For E(A), the order
complex is isomorphic to the barycentric subdivision of the boundary of an r-polytope,
and hence is homeomorphic to an (r− 1)-sphere.

We now want to consider extensions of A by a pseudohyperplane, i.e. a topological
deformation of hyperplane. This gives rise to a pseudohyperplane arrangement, and the
combinatorial equivalence classes of pseudohyperplane arrangements are called oriented
matroids.2 The set of all possible oriented matroids which arise as one-pseudohyperplane
extensions of A is a poset as before, and this poset is an invariant of the oriented matroid
M of A. We call this the extension poset E(M) of M, and the order complex of this poset
the extension space of M.

In general, E(M) is not homeomorphic to a sphere as is the case with E(A). The
extension space conjecture asked if the topology of E(M) is still nice in the following
sense.

Conjecture 1.1. If M is a realizable oriented matroid of rank r, then E(M) is homotopy
equivalent to a sphere of dimension r− 1.

In their paper originally introducing the conjecture, Sturmfels and Ziegler [16] proved
the conjecture for a class of oriented matroids which they called strongly Euclidean ori-
ented matroids. This class includes all oriented matroids of rank at most 3 or corank at
most 2.3 On the other hand, Santos [14] later showed that realizable oriented matroids
which are not strongly Euclidean exist both in rank 4 and corank 3.

Conjecture 1.1 also makes sense if one drops the hypothesis that M is realizable. In
this case, Mnëv and Richter-Gebert [9] showed that this version of the conjecture is false;
they constructed non-realizable oriented matroids of rank 4 with disconnected extension
spaces.

In this abstract, we sketch a disproof of the extension space conjecture by showing
that there exists a realizable uniform oriented matroid of high rank (possibly around 105)

2We will not give a more formal definition of oriented matroids than this, but we note that this def-
inition can be made rigorous by carefully defining what a pseudohyperplane arrangement is. Namely,
the pseudohyperplanes should be tame deformations of hyperplanes and the pseudohyperplanes should
intersect like normal hyperplanes; i.e. the intersection of a subset of the pseudohyperplanes should be the
deformation of a flat.

3The corank of an oriented matroid M is the number of pseudohyperplanes in a representative of M
minus the rank of M.
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and corank 3 with disconnected extension space. The counterexample will be described
in Section 3.

2 Connections to other problems

Before describing the counterexample, we discuss the two problems mentioned at the
beginning of the abstract, which are also resolved as a result of this counterexample.

2.1 Combinatorial Grassmannians

Let A be a central, essential oriented hyperplane arrangement of dimension n. In the
previous section, we considered extensions of A by a single oriented hyperplane. We
now consider extensions of A by a single unoriented flat of dimension k passing through
the origin. The set E(k, A) of combinatorial equivalence classes of such extensions can
be partially ordered as before; in fact, the intersection of A with the new k-flat forms a k-
dimensional hyperplane arrangement, so elements of E(k, A) can be viewed as oriented
matroids. The poset E(k, A) is homeomorphic to the real Grassmannian G(k, n).

As before, we can consider a combinatorial version where we extend A by a “pseud-
oflat” of dimension k and look at the poset of equivalence classes of such extensions.
This poset is an invariant of the oriented matroid M of A, and is called the combinatorial
Grassmannian G(k, M).

Combinatorial Grassmannians can be thought of as combinatorial models for the
real Grassmannian and play important roles in the theories of combinatorial differential
manifolds and matroid bundles; see [8] and [1]. As before, the basic problem surrounding
these objects is whether or not they are topologically similar to their real counterparts.
This is captured in the following conjecture by MacPherson, Mnëv, and Ziegler [10].

Conjecture 2.1. If M is a realizable oriented matroid of rank n, then G(k, M) is homotopy
equivalent to G(k, n).

In the case where k = n− 1, G(n− 1, M) is an “unoriented version” of the extension
space E(M), and in fact E(M) is a double cover of G(n − 1, M). It can be shown that
Conjecture 2.1 for k = n− 1 is equivalent to the extension space conjecture, and thus the
conjecture is false in general.

There is a case of Conjecture 2.1 which remains open and has attracted consider-
able attention. If M is realized by the (combinatorially unique) essential n-dimensional
hyperplane arrangement with n hyperplanes, then G(k, M) is known as the MacPher-
sonian MacP(k, n), and is the poset of all oriented matroids of rank k on n elements.
The MacPhersonian serves as the classifying space in the theory of matroid bundles,
analogous to the role played by the Grassmannian in the theory of real vector bundles.
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The exact relationship between real vector bundles and these combinatorial analogues
remains mysterious, and an answer to Conjecture 2.1 in the case of the MacPhersonian
would go far in illuminating it. The conjecture in this case has been shown by Babson to
be true for k ≤ 3 [3]. See [1] and [2] for more progress on the problem.

2.2 The generalized Baues problem

The generalized Baues problem is a problem which arose in relation to the theory of fiber
polytopes by Billera and Sturmfels [5]. We give a (very) vague sketch of this theory; for a
comprehensive treatment, see the survey [12].

Given a projection π : P → Q of polytopes, one can construct “π-induced subdivi-
sions” of Q, which are polytopal subdivisions of Q which are in some sense compatible
with the faces of P and the projection π. For example, for a certain choice of π and
P, the π-induced subdivisions of Q are precisely all polytopal subdivisions of Q whose
cells’ vertices are vertices of Q. (These subdivisions are known as polyhedral subdivisions
of Q.) The set of all π-induced subdivisions of Q forms a poset where subdivisions are
partially ordered by refinement. Within this poset, there are certain subdivisions called
coherent subdivisions; roughly speaking, these are subdivisions which can be defined
globally through a linear functional. We can then construct a polytope called the fiber
polytope of π such that the faces of this polytope are in order-preserving bijection with
the coherent π-induced subdivisions of Q.

For example, let Q be a two-dimensional polygon. It can be shown that all polyhedral
subdivisions of Q are coherent (or regular), and thus the associated fiber polytope has
faces in bijection with the poset of all polyhedral subdivisions of Q. This polytope is
precisely the associahedron, a classical polytope with a rich history.

The generalized Baues conjecture asks about the topology of the entire poset of π-
induced subdivisions, including the non-coherent ones. Since this poset always has a
unique maximal element, the entire poset itself is always contractible. If we remove the
top element, we have the following conjecture, first posed as a problem in [4].

Conjecture 2.2. Let P(π) be the poset of all π-induced subdivisions except for the top el-
ement. Then P(π) is homotopy equivalent to a sphere of dimension dim(P)−dim(Q)−
1.

As with the previous conjectures, the situation is that we have some subposet (in this
case, the coherent π-induced subdivisions) with a nice topology, and we want to know
if this is reflected in the topology of the entire poset.

Conjecture 2.2 was proven false by Rambau and Ziegler [11]. Afterwards, attention
shifted to special cases of the generalized Baues conjecture, in particular the cases of
polyhedral subdivisions and zonotopal tilings. The case of polyhedral subdivisions was
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eventually disproved by Santos in [15]. We now discuss the conjecture for zonotopal
tilings and its connection to extension spaces.

A zonotope is the Minkowski sum of a collection of line segments, called the generating
collection for the zonotope. Formally, we will always associate a particular generating
collection to a zonotope. A zonotopal tiling of a zonotope Z is a subdivision of Z into other
zonotopes, each of which is generated by a subcollection of the generating collection
for Z. Zonotopal tilings are a special case of π-induced subdivisions; i.e., there is a
projection π : P → Z such that the π-induced subdivisions are precisely the zonotopal
tilings of Z.

Zonotopal tilings have a nice connection with liftings of oriented matroids. Liftings of
oriented matroids are the dual concept to the extensions of oriented matroids described
earlier; in particular, given an oriented matroid M, there is a poset F (M) of liftings of
M, and this poset is isomorphic to the extension poset of an oriented matroid called the
dual of M. The Bohne-Dress theorem states the following.

Theorem 2.3. [17, Thm. 7.32] Let Z be a zonotope with generating collection V, and let
A be the hyperplane arrangement with a hyperplane for each vector in V perpendicular
to that vector. Let M be the oriented matroid of A. Then there is an order-preserving
bijection between the set of zonotopal tilings of Z (minus the top element) and F (M).

Combined with the duality of liftings and extensions, we obtain the following.

Proposition 2.4. Conjecture 1.1 is equivalent to Conjecture 2.2 for zonotopal tilings.

Our result thus resolves this case of the generalized Baues conjecture.

3 The counterexample and proof idea

We now describe the counterexample. Begin with the vector configuration {ei − ej : 1 ≤
i < j ≤ 4}, where ei is the i-th standard basis vector. Let EN be the vector configuration
obtained by repeating each vector in the previous configuration N times. Let ẼN be
a random configuration obtained by perturbing each vector in EN by a small random
displacement in the span of EN. Our result is the following.

Theorem 3.1. For large enough N, with probability greater than 0, ẼN contains a sub-
configuration E with corank greater than 1 such that the oriented matroid dual to the
oriented matroid of E has disconnected extension space.

The strategy of the proof is to show that the flip graph associated to ẼN is discon-
nected. The flip graph can be defined as the highest two “levels” of the extension poset
of the dual of ẼN; its vertices are the maximal elements of this poset and its edges are
the “minimal moves”, or flips, between them. We then use a known trick (see [12, Lem.
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3.1], [13, Cor. 4.3]) to convert disconnectedness of flip graphs to disconnectedness of
entire posets. This same trick was used in the disproof of the generalized Baues con-
jecture for polyhedral subdivisions. (It is worth noting that the configuration EN also
has disconnected flip graph [7]. However, in order to make use of the above trick, the
configuration we consider must be in general position.) Unfortunately, the trick only
tells us that there is some subconfiguration E ⊆ ẼN whose dual oriented matroid has
disconnected extension space, and does not tell us what E is.

Showing that the aforementioned flip graph is disconnected is the difficult part of
the proof. To do this, we use a probabilistic argument to prove the existence of certain
elements of the flip graph. Roughly speaking, these elements are oriented matroids
which have certain “unflippable” substructures; these substructures are defined locally,
and a probabilistic argument is used to show that for large enough N, such structures
must exist. The value of N required for these arguments to work is roughly 105. Once
these elements of the flip graph are shown to exist, it is immediate that they must be in
different connected components of the flip graph.

The above probabilistic argument is a much more complicated version of the one
used by the author in [7] to show disconnectedness of the flip graph of EN. For the
complete proof of Theorem 3.1, see the full paper [6].
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